
“Investigation of tuning parameters of Tabu Search
algorithm and its modification for solving the

Routing Courier Delivery Problem.”

R. Shafeyev , L. Lyubchik

The paper considers the Routing Courier Delivery Problem with the service time
for which the discrete model was constructed and the calculation scheme based on
the Tabu search algorithm. This article provides a method for dynamically adjusting
the parameters of Tabu Search algorithm in the process of solving the problem. The
efficiency of the proposed algorithm‘s scheme has been tested on large-scale problems,
which were generated on the basis of well known model routing problems.

Introduction

One means of saving resources for transportation of goods is the use of decision
support systems in the field of transport logistics. One of the key functions of
decision support systems in the field of transport logistics is the ability to calculate
and construct efficient detour routes for various purposes in the transport network
in terms of cost. The mathematical formulation of this problem is widely known as
the Vehicle Routing Problem (VRP). There are several types of VRPs with various
additional conditions such as the carrying vehicle‘s capacity, time of deliveries and
other limitations for a better description of the environment.

This article is devoted to the courier routing problem, which is a sub-problem
of VRP. The problem is to find a route to visit a given set of addresses by a number
of units of vehicles carrying goods from the sender to the recipient.

Automation of the route planning process will be relevant for: online stores,
large wholesale companies (e.g. for distribution of goods that are perishable or
optimizing the delivery schemes of goods to destinations) and firms with the aim of
organizing restocking in stores. A practical application of the problem can be found
in the transportation of patients between the buildings of clinic [16, 18], the delivery
of newspapers and magazines and the delivery of fuel to homes [19]. The solution
of these problems also has a practical application in the helicopter transportation
system of people between offshore oil platforms [17].

In recent years are an increasing amount of people turning to courier services
for famous needs.Typically, client orders placed the day before and the dispatcher
then has a full list of orders that must be delivered within the deedlines started
by the client. Attanasio [15] held a thematic research on courier services which
described the advantages of using computer technologies to human dispatching. In
his work he considered examples of work by eCourier Ltd, a London company that
offers express services. Their clients are mainly law firms, financial institutions,
advertising agencies and other organizations that are interested in the rapid delivery
of goods or the sensitive documents. Once all of the orders at a particular time have
been placed, you must create a route that would satisfy the requirements of the

1

customers. Depending on the service level that was specified by the client, the
courier can combine several products customers.

Companies that offer courier services frequently have a mixed fleet of vehicles,
which consists of bicycles, motorcycles, cars and small trucks. Depending on the
type of request, the transport arrangement means and time slots will be selected
the kind of vehicle that will be able to execute the order within a specified time.
Researches [15] showed that the using of computer methods, including optimization
algorithms have been very profitable for courier companies.

Thus, the use of an automated system allows to improve the quality of service,
reduce delivery time, improve courier efficiency and reduce the cost of shipping,
thereby providing a competitive advantage increase.

Problem Statement

Let 𝐶, 𝑑𝑖𝑚(𝐶) = 𝑛 be a set of vehicles and 𝑄, 𝑑𝑖𝑚(𝑄) = 𝑚 be a set of requests
received from customers at the current time.

Suppose that the following information is known about vehicles from set 𝐶:
𝑃𝑐 – vehicle position, 𝑐 ∈ 𝐶;
𝐿𝑐 – vehicle capacity, 𝑐 ∈ 𝐶.

Let 𝑆 be a set of senders, (𝑑𝑖𝑚(𝑆) = 𝑑𝑖𝑚(𝑄) = 𝑚), 𝑅 is a set of receivers,
𝑑𝑖𝑚(𝑅) = 𝑑𝑖𝑚(𝑄) = 𝑚. Then each client request 𝑞 ∈ 𝑄 includes the following
information:
𝑠𝑞 – a sender of client shipment, 𝑠 ∈ 𝑆;
𝑟𝑞 – a receiver of client shipment, 𝑟 ∈ 𝑅;

𝑃𝑠𝑞 – sender position;

𝑃𝑟𝑞 – receiver position;
𝑤𝑞 – client shipment that is required to be delivered from the sender to the recipient;
[𝑡𝑞𝑠, 𝑡

𝑞
𝑠 + ∆𝑡𝑞𝑠] – the time window within which the worker must to pick up the goods

from the sender;
[𝑡𝑞𝑟, 𝑡

𝑞
𝑟 + ∆𝑡𝑞𝑟] – the time window within which the worker must deliver the goods to

the receiver.
Thus, each request can be represented as a tuple:

∀𝑞 ∈ 𝑄 : 𝑞 = (𝑠𝑞, 𝑟𝑞, 𝑃𝑠𝑞 , 𝑃𝑟𝑞 , 𝑤𝑞, 𝑡
𝑞
𝑠,∆𝑡

𝑞
𝑠, 𝑡

𝑞
𝑟,∆𝑡

𝑞
𝑟) (1)

To estimate the cost of transportation between destinations defined by the following
cost function Ω:

∀𝑖, 𝑗 ∈ 𝑆 ∪𝑅 : ∃Ω𝑖,𝑗 = Ω(𝑃𝑖, 𝑃𝑗) (2)

It is necessary to construct the most optimal routes of vehicles movement for
the transportation of goods from the sender to the receiver for all client requests.

Discrete model

The Routing Courier Delivery Problem can be represented as a directed graph
𝐺 = 𝐺(𝑉,𝐸). The set 𝑉 = 𝐶 ∪ 𝑆 ∪ 𝑅 are nodes of the graph 𝐺, with elements

2

Figure 1. Example of the Routing Delivery Problem.

consists of vehicles, senders and receivers. 𝐸 – dynamic set of arcs of the graph 𝐺,
such that:

∀𝑒(𝑋) ∈ 𝐸 : 𝑒(𝑋) = (𝑣𝑖, 𝑣𝑗),∃𝑣𝑖 ∈ 𝑉, 𝑣𝑗 ∈ 𝑉/𝐶 (3)

Let 𝑋 = {𝑋𝑘}𝑛𝑘=1 is a sequence of variable matrices for each vehicle 𝑘 ∈ 𝐶.
Elements of the matrices take the following values:

𝑥
(𝑘)
𝑖,𝑗 =

{︃
1, the vehicle 𝑘 ∈ 𝐶 moves from the 𝑖 node to the 𝑗

0, otherwise.
(4)

where: 𝑖 ∈ 𝑉/𝐶 ∪ 𝑘, 𝑗 ∈ 𝑉/𝐶.

Let us introduce the vector of variables �⃗� 𝑘(𝑋) for each vehicle 𝑘 𝑖𝑛𝐶. Vector
elements have the following values:

�⃗�
(𝑘)
𝑗 (𝑋) =

{︃
1, the request 𝑗 ∈ 𝑄 is processed by vehicle 𝑘 ∈ 𝐶

0, otherwise.
(5)

where: 𝑖 ∈ 𝑉/𝐶 ∪ 𝑘, 𝑗 ∈ 𝑉/𝐶.

3

Let 𝑡𝑘𝑗 (𝑋(𝑘)) – arrival time of the vehicle 𝑘 ∈ 𝐶 at the destination 𝑗 ∈ 𝑆 ∪𝑅.

The objective function takes the following form:

𝐹 (𝑋) =
∑︁
𝑘∈𝐶

∑︁
𝑖,𝑗∪𝑉

Ω𝑖𝑗 · 𝑥(𝑘)𝑖𝑗 → 𝑚𝑖𝑛 (6)

We define constraints on the objective function (6), which provided the conti-
nuity of routes:∑︁

𝑘∈𝐶

∑︁
𝑗∈𝑆∪𝑅

𝑥
(𝑘)
𝑖,𝑗 ≤ 1,∀𝑖 ∈ 𝑉 (7)

∑︁
𝑘∈𝐶

∑︁
𝑖∈𝑆∪𝑅∪{𝑘}

𝑥
(𝑘)
𝑖,𝑗 = 1,∀𝑗 ∈ 𝑆 ∪𝑅 (8)

∑︁
𝑖∈𝑆∪𝑅∪{𝑘}

𝑥
(𝑘)
𝑖,𝜔 −

∑︁
𝑗∈𝑆∪𝑅

𝑥
(𝑘)
𝜔,𝑗 ≤ 1,∀𝜔 ∈ 𝑆 ∪𝑅,∀𝑘 ∈ 𝐶 (9)

∑︁
𝑖∈𝑆∪𝑅/𝑍

∑︁
𝑗∈𝑍

𝑥
(𝑘)
𝑖,𝑗 > 0, 𝑍 = {𝑧 ∈ 𝑍 :

∑︁
𝑗∈𝑆∪𝑅

𝑥
(𝑘)
𝑗,𝑧 > 0},∀𝑘 ∈ 𝐶 (10)

The restriction (7) prohibits a node in the graph 𝐺 of having more than one
output arc. The restriction (8) prohibits a node from having more than one input
arc. The constraint (9) indicates that the number of input arcs to the node can not
be less than the output arcs (this constraint considers the fact that the vehicle can
leave the destination only if it has visited this node). The restriction (10) excludes
local loops.

The next constraints synchronize values of variables 𝑋 and �⃗� for each request
𝑞 ∈ 𝑄 and prohibits the courier service visiting the receiver before meeting with the
sender first:

𝑥(𝑘)𝑠𝑞 + 𝑥(𝑘)𝑟𝑞 = 2 · 𝑦(𝑘)𝑞 (𝑋),∀𝑘 ∈ 𝐶, 𝑞 ∈ 𝑄 (11)

𝑦(𝑘)𝑞 (𝑋) · (𝑡𝑘𝑟𝑞 (𝑋(𝑘)) − 𝑡𝑘𝑠𝑞 (𝑋(𝑘)) ≥ 0,∀𝑘 ∈ 𝐶, 𝑞 ∈ 𝑄 (12)

Defining restrictions for the accounting of vehicle capacity and delivery time
windows: ∑︁

𝑗∈𝑄
𝜔𝑗 · 𝑦𝑘𝑗 ≤ 𝐿𝑘,∀𝑘 ∈ 𝐶 (13)

𝑡𝑞𝑠 ≤ 𝑡𝑘𝑠𝑞 (𝑋(𝑘) ≤ 𝑡𝑞𝑠 + ∆𝑡𝑞𝑠,∀𝑞 ∈ 𝑄, (14)

𝑡𝑞𝑟 ≤ 𝑡𝑘𝑟𝑞 (𝑋(𝑘) ≤ 𝑡𝑞𝑟 + ∆𝑡𝑞𝑟,∀𝑞 ∈ 𝑄, (15)

4

Description of the Algorithm

We present the set of matrices {𝑋𝑘} in the form of a vector defined on the
hypercube 𝐸𝜂 = {0.1}𝜂, where 𝜂 = 𝑛 · (2𝑚 + 1) · 2𝑚. The aim of the task is to
minimize the objective function:

𝐹 (�⃗�) → 𝑚𝑖𝑛, �⃗� ∈ 𝐸𝜂 (16)

Denote by 𝛿(�⃗�, �⃗�) the Hamming distance between �⃗� and �⃗�. Through 𝑁𝑙(�⃗�) we
denote the neighborhood of a point �⃗� radius 𝑙[4]:

𝑁𝑙(�⃗�) = {�⃗� ∈ 𝐸𝜂 : 𝛿(�⃗�, �⃗�) ≤ 𝑙}, 𝑙 = ¯1, 𝜂 (17)

When 𝑙 = 𝜂 a set 𝑁𝑙(�⃗�) for any vector �⃗� coincides with the set 𝐸𝜂 and being in
this neighborhood vector with a minimum value of the objective function is equiva-
lent to solving the original problem. The classic Local Search algorithm starts with

a randomly selected vector 𝑢0. On the 𝑖 step of the algorithm the current vector
moves to the minimum value of the objective function in the neighborhood:

𝐹 (�⃗�𝑖+1) = 𝑚𝑖𝑛{𝐹 (�⃗�) : �⃗� ∈ 𝑁𝑙(�⃗�
𝑖)} (18)

The algorithm terminates at a local optimum, when 𝐹 (⃗𝑢𝑖+1) = 𝐹 (𝑢𝑖). In
VRPs there are a typical situation when many local optimums and only one of them
is global:

𝐹𝑜𝑝𝑡 = 𝑚𝑖𝑛{𝐹 (�⃗�) : 𝑣 ∈ 𝐸𝜂} (19)

To ensure that the algorithm does not stop at a local minimum and move from
one local optimum to another, we must remove the central point from the current
neighborhood and when the algorithm searches for the minimum, the following rule

applies. Let 𝑙 = 2 and the current position moves from 𝑢𝑖 to ⃗𝑢𝑖+1 therefore changing
the values in the coordinate (𝑢𝑖𝜆, 𝑢

𝑖
𝜔). The algorithm stores such pairs for the last

ℎ amount of steps and in the next step prohibits the movement in these directions.
An ordered list of such pairs:

𝜑𝑖 = {(𝑢𝑖𝜆, 𝑢
𝑖
𝜔), (𝑢𝑖−1

𝜆 , 𝑢𝑖−1
𝜔), · · · , (𝑢𝑖−ℎ+1

𝜆 , 𝑢𝑖−ℎ+1
𝜔)} (20)

is called the Tabu List. The pair (𝑢𝜆, 𝑢𝜔), 𝜆 ̸= 𝜔 does not prohibit the movement
of pairs (𝑢𝜆, 𝑢𝜆) and (𝑢𝜔, 𝑢𝜔). When 𝑙 > 2, the Tabu List is created accordingly
for 3 coordinates, 4 coordinates, etc. A set of non-restricted vectors are denoted by

𝑁𝑙(𝑢𝑖, 𝜑𝑖). In order for the search to be efficient, it is advisable to use small values
of ℎ and to control this parameter throughout the algorithm.

5

1 function TabuSearch(𝑢0, 𝑙, 𝑝, ℎ)
2 // Initial variables:
3 𝑢𝑜𝑝𝑡 = 𝑢0 𝐹 𝑜𝑝𝑡 = 𝐹 0 𝜑0 = ∅ 𝑖 = 0
4 while the breakpoint is not triggered do
5 𝑁𝑙 = 𝑁𝑙(𝑢

𝑖, 𝜑𝑖, 𝑝, ℎ)
6 if 𝑁𝑙 ̸= ∅ then
7 𝑢𝑖+1 = 𝑢𝑖

8 𝑖 = 𝑖+ 1
9 goto 5

10 else
11 // find optimum into the neighborhood 𝑁𝑙:
12 𝑢𝑖+1 : 𝐹 (𝑢𝑖+1) = 𝑚𝑖𝑛{𝐹 (𝑦) : 𝑦 ∈ 𝑁𝑙}
13 end
14 if 𝐹 (𝑢𝑖+1) < 𝐹𝑜𝑝𝑡) then
15 𝐹𝑜𝑝𝑡 = 𝐹 (𝑢𝑖+1)
16 𝑢𝑜𝑝𝑡 = 𝑢𝑖+1

17 end
18 𝜑𝑖+1 = 𝑢𝑝𝑑𝑎𝑡𝑒(𝜑𝑖)
19 i = i + 1

20 end
21 return 𝑢𝑜𝑝𝑡

Algorithm 1: Pseudo-code for probabilistic Tabu Search algorithm.

Denoted by 𝑁𝑙(𝑢𝑖, 𝜑𝑖, 𝑝) a probabilistic neighborhood which stems from a de-

terministic 𝑁𝑙(𝑢𝑖, 𝜑𝑖) as follows; each vector �⃗� ∈ 𝑁𝑙(𝑢𝑖, 𝜑𝑖) with probability 𝑝 is

included in the neighborhood 𝑁𝑙(𝑢𝑖, 𝜑𝑖, 𝑝) regardless of other points. Note that this
set may be empty or contain only one point. The General scheme of the probabilistic
Tabu Search algorithm in scheme 1 is referred to as the pseudo-code.

The stopping criterion is based on the total number of steps 𝑁𝑠𝑡𝑜𝑝, which does
not change the value 𝐹𝑜𝑝𝑡. Values 𝑙, 𝑝, ℎ are the control parameters of the algorithm.
Their choice depends on the problems dimension.

In the presented scheme, it was assumed that the value of ℎ (the dimension of
the Tabu List) does not change throughout the course of the algorithm. This creates
certain difficulties in the implementation of the scheme, as it is unknown how long
the Tabu List size should be. At small ℎ the algorithm can get into an infinite loop.
At large ℎ the search becomes inefficient.

Initialization

To use the Tabu Search Algorithm, you must first build the initial solution. For

the initial solution 𝑢0, you can use the heuristic method of route constructing[?, ?].
The essence of these methods is as follows. According to the rules of the algorithm
routes for each vehicle are constructed as client requests come in order to ensure

6

efficiency. To preserve the order of visits of the nodes by the vehicles in the pair are
ordered ”sender-receiver”.This algorithm is fast enough (computational complexity

𝑂(𝑛3) [?]), so it is convenient to use for the initialization of the vector 𝑢0.
At the beginning of the algorithm a single request is added to each route in

accordance with the time constraints. The first node(sender) is chosen randomly or
is selected the one you want to perform before others. Then every possible request
𝑢 from the set of unchecked requests 𝑄′ (the set 𝑄′ ∈ 𝑄) is estimated by inserting it
in the beginning of the route, or the end of the route between two adjacent nodes.
the following criteria is used to select the insertion point:

𝑐(𝑘, 𝑣𝑖, 𝑢, 𝑣𝑖+1) = min =

⎧⎪⎨⎪⎩
min𝑞=2,...,𝑛𝑘(Ω𝑘𝑞−1,𝑢 + Ω𝑘𝑢 + Ω𝑘𝑢,𝑞 − 𝜇Ω𝑘𝑞−1,𝑞),

Ω𝑘𝑘,𝑢 + Ω𝑘𝑢,𝑞 + Ω𝑘𝑢𝜇Ω𝑘𝑞,𝑞), 𝑞 = 1

Ω𝑘𝑞,𝑢 + Ω𝑘𝑢, 𝑞 = 𝑛𝑘
(21)

where:
𝑘 – a vehicle route 𝑘 ∈ 𝐶;
𝑛𝑘 - a number of nodes in the route;
𝜇 –a tuning parameter, 𝜇 ≥ 0;
Ω𝑘𝑢 = Ω𝑘[𝑃𝑠𝑞 , 𝑃𝑟𝑢] – insert a new request between existing sender and receiver;

Ω𝑘𝑢,𝑞 = Ω𝑘[𝑃𝑟𝑢 , 𝑃𝑞] – insert a new request between existing sender and receiver to
the begining of the route;
Ω𝑘𝑞,𝑢 = Ω𝑘[𝑃𝑞, 𝑃𝑠𝑢] – insert a new request between existing sender and receiver to
the end of the route.

Adds that request, which 𝑐(𝑘, 𝑣𝑖, 𝑢, 𝑣𝑖+1) will be minimal:

𝑢* : 𝑐(𝑘, 𝑣𝑖, 𝑢
*, 𝑣𝑖+1) = min

𝑢
[𝑐(𝑘, 𝑣𝑖, 𝑢, 𝑣𝑖+1)] (22)

As a result, 𝑢* is added to the current route 𝑘 in the most advantageous position.
Fig. 2 represented by a weighted graph, which shows the example of the exe-

cution of one step of designing routes:
a) the original graph, which shows options to add new requests to the route;
b) the route, which was built by the construction method after first step.

Example. Initially we have a request, which consists of a sender and receiver.
The value of the cost function Ω are shown in the graph arcs (Figure 2.). You need to
add new requests to the route, using the criteria 21 and 22. The coefficient 𝜇 = 0.5.

Solution.Consider the process of adding new requests. Of the two proposed
requests ({𝑆2, 𝑅2}, {𝑆3, 𝑅3}) it chooses the one which needs to be added firstly.
Depending on the location where you can add application (beginning, end, middle),
select the desired criteria. Thus, we find the optimal solution to insert a new order
{𝑆2, 𝑅2}:
min[𝑐(𝑘, 𝑆1, {𝑆2, 𝑅2}, 𝑅1), 𝑐(𝑘, {𝑆2, 𝑅2}, 𝑆1, 𝑅1), 𝑐(𝑘, 𝑆1, 𝑅1, {𝑆2, 𝑅2})] = min[3 +
11 + 4 − 0.5 · 8; 17 + 11 + 8 − 0.5 · 20; 2 + 11] = min[14; 26; 13]
We find the optimal place insert a new request {𝑆3, 𝑅3}:
min[𝑐(𝑘, 𝑆1, {𝑆3, 𝑅3}, 𝑅1), 𝑐(𝑘, {𝑆3, 𝑅3}, 𝑆1, 𝑅1), 𝑐(𝑘, 𝑆1, 𝑅1, {𝑆3, 𝑅3})] = min[6 +

7

Figure 2. An example embodiment of a method of route constructing a single step

9 + 12 − 0.5 · 8; 10 + 9 + 13 − 0.5 · 20; 5 + 9] = min[23; 22; 14].
From the solutions found will choose the solution with the lowest cost
𝑐(𝑘, 𝑣𝑖, 𝑢, 𝑣𝑖+1).In this example, 𝑐(𝑘, 𝑆1, 𝑅1, {𝑆2, 𝑅2} = 13.

Thus, the new route will consist of initial requests and new requests {𝑆2, 𝑅2},
which will be added to the end of the route.

Conclusion: route in {𝑆1, 𝑅1} it is necessary to add request {𝑆2, 𝑅2}, which
will be added to the end of the route

Fig. 3presented the options of adding a new request to route {𝑆2, 𝑅2}:
a) the option of adding request {𝑆2, 𝑅2} in the end of the route;
b) the option of adding request {𝑆2, 𝑅2} in the beginning of the route;
c) the option of adding request {𝑆2, 𝑅2} between nodes {𝑆1, 𝑅1}.

Fig. 4 presented the options of adding a new request to route {𝑆3, 𝑅3}:
a) the option of adding request {𝑆3, 𝑅3} in the end of the route;
b) the option of adding request {𝑆3, 𝑅3} in the beginning of the route;
c) the option of adding request {𝑆3, 𝑅3} between nodes {𝑆1, 𝑅1}.

A Method of Forming Solutions Neighborhood

During the work of the Tabu Search Algorithm should be carried out watching

the neighborhood 𝑁𝑙(𝑢𝑖) current point 𝑢𝑖. In the calculation of the route in the
neighborhood gets a sufficiently large number of points. But due to the limitations of
our model features many of these points is not a solution to the problem. Therefore,

8

Figure 3. Options added the request to route {𝑆2, 𝑅2}

due to the peculiarities of the considered discrete problem, we used the following
method definition of a neighborhood.

Let 𝑥𝑘(𝑣) - node index 𝑣, 𝑣 ∈ 𝑅 ∪ 𝑆 in the path of the vehicle 𝑘 ∈ 𝐶. Each
request consists of pairs {𝑆,𝑅}, where 𝑆 - sender, and 𝑅 - recipient. During the
formation of the neighborhood, should be preserved the integrity of the route that
is performed restrictions (7 – 10). Above route requests 𝑅𝑜𝑢𝑡𝑒𝑖, 𝑖 = 1, . . . 𝑛 are per-
formed permutation operation. The findings of the permutations of the vectors �⃗� and

is a neighborhood of 𝑁𝑙(𝑢𝑖). To swap transactions used movement and absorption.

Operation swallowing is shown in Figure ??. (A), which shows the two routes
𝑅𝑜𝑢𝑡𝑒1 i 𝑅𝑜𝑢𝑡𝑒2. Route 𝑅𝑜𝑢𝑡𝑒1 consists of catch {𝐶1, 𝑆1, 𝑅1, 𝑆2,
𝑅2, 𝑆3, 𝑅3}, and the route is 𝑅𝑜𝑢𝑡𝑒2 node {𝐶2, 𝑆4, 𝑅4, 𝑆5, 𝑅5, 𝑆6, 𝑅6}. During the
operation of the absorption {𝑆1, 𝑅1} in the route 𝑅𝑜𝑢𝑡𝑒1, paste this application to
route 𝑅𝑜𝑢𝑡𝑒2 can be performed on 𝑛+ 1 positions.

The move operation is shown in figure ??. (B). This figure shows the route
𝑅𝑜𝑢𝑡𝑒1, which consists of nodes {𝐶1, 𝑆1, 𝑅1, 𝑆2, 𝑅2, 𝑆3, 𝑅3}. To save the route
integrity: node 𝑆𝑖 (sender) can be visited only to 𝑅𝑖 (recipient), on this ba-
sis during the move operation, the node 𝑆𝑖 can move is to satisfy the condi-
tion 0 < 𝑥𝑛𝑒𝑤(𝑆𝑖) < ̃︀𝑢(𝑅𝑖), and node 𝑅𝑖 can be moved until the condition is
𝑛𝑘 ≥ 𝑥𝑛𝑒𝑤(𝑅𝑖) > ̃︀𝑢(𝑆𝑖).

Analysis of the algorithm parameters

The Tabu Search algorithm has two basic parameters: ℎ – size of the list of
prohibitions and 𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 – accepted count limit of size of neighbordhood 𝑁𝑙(�⃗�).
For the experiments, we constructed the test tasks on the basis of the capacity rout-
ing problems developed by Breedam, Fisher, Christofides and Eilon. To determine

9

Figure 4. Options added the request to route {𝑆3, 𝑅3}

trends in time and cost of the decision we used exponential smoothing by a factor
of 0.1.

In this experiment we use two different breakpoint strategies:
1. 𝑆𝑡𝑒𝑝𝐶𝑜𝑢𝑛𝑡 termination strategy – terminates when an amount of steps has

been reached;
2. 𝑇𝑖𝑚𝑒𝑆𝑝𝑒𝑛𝑡 termination strategy – terminates when an amount of time has

been reached.
As should have been expected, for large values of the parameter a jam occurs

in local optimum due to the large number of restrictions of movement in space.
Otherwise if you select a too small tabu size, algorithm can still get stuck in a local
optimum. In the first computational experiment we made finding the best solutions
for different values of the tabu size parameter from interval ℎ ∈ [0, 40] (pict. 6 an
pict. 7).

In the second experiment (see figure 8) we built a relationship between the
number 𝑁𝑛𝑒𝑖𝑔ℎ. of viewed solutions neighborhood size 𝑁𝑙(�⃗�) using 𝑇𝑖𝑚𝑒𝑆𝑝𝑒𝑛𝑡 ter-
mination strategy. In this experiment we made finding the best solutions for different
values of the neighborhood size parameter from interval 𝑁𝑛𝑒𝑖𝑔ℎ. ∈ [750, 850].

Modification

The first generalized diagram is as follows. First, the set of solutions is con-
structed by route construction algorithm. Then every solution is improved by Tabu
Search and choose the best solution according to the objective function.

Modification of the scheme is based on the hypothesis of ”On a large valley”[9].
According to this hypothesis, the average local optima are located much closer to
the global than a randomly chosen point. There is a certain concentration of local
optimum in a small part of the feasible region, which is figuratively called a large

10

Figure 5. Example of operations: a) absorption and b) moving

valley. If this assumption is true, then it is advisable to remember the best solutions
and based on them design new original decision. We use this idea to solve the
Routing Courier Delivery Problem.

We proceed to the description of the algorithm in scheme 2. Let 𝑈𝑜𝑝𝑡 is a
sorted array of optimal solutions by value of the objective function ascending, ie:

𝐹 (𝑢𝑜𝑝𝑡1) ≤ 𝐹 (𝑢𝑜𝑝𝑡2) ≤ . . . < 𝐹 (𝑢𝑜𝑝𝑡𝑖) ≤ . . . ≤ 𝐹 (𝑢𝑜𝑝𝑡𝑠𝑖𝑧𝑒𝑜𝑓(𝑈𝑜𝑝𝑡)) (23)

Each solution 𝑢𝑜𝑝𝑡𝑖 gets into the population with a given probability 𝑝𝑖𝑢, the proba-
bility of selection decreases with increasing sequence number:

𝑝1𝑢 = 1 > 𝑝2𝑢 > . . . > 𝑝𝑖𝑢 > . . . > 𝑝𝑠𝑖𝑧𝑒𝑜𝑓(𝑈
𝑜𝑝𝑡)

𝑢 , 𝑝𝑠𝑖𝑧𝑒𝑜𝑓(𝑈
𝑜𝑝𝑡)

𝑢 > 0 (24)

11

Figure 6. The dependence of the quality of solutions on the size of the tabu list when
using 𝑆𝑡𝑒𝑝𝐶𝑜𝑢𝑛𝑡 termination strategy

1 function constructSolution(𝑈𝑜𝑝𝑡, 𝑝𝑢, 𝑛
𝑚𝑖𝑛
𝑠)

2 // 𝑈𝑜𝑝𝑡 – a sorted set array of optimal solutions
3 if 𝑠𝑖𝑧𝑒𝑜𝑓(𝑈𝑜𝑝𝑡) < 𝑛𝑚𝑖𝑛𝑠 then
4 // construct solution using heuristics(for example, Solomon alg.)
5 𝑢0 = ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝐶𝑜𝑛𝑠𝑐𝑟𝑢𝑐𝑡𝑖𝑜𝑛()
6 return 𝑢0

7 end
8 while 𝑖 < 𝑠𝑖𝑧𝑒𝑜𝑓(𝑈𝑜𝑝𝑡) do
9 if 𝑟𝑎𝑛𝑑𝑜𝑚(0.0, 1.0) > 𝑝𝑖𝑢 then

10 i = i + 1
11 goto 8

12 end

13 𝑅𝑖 =randomly select a route from 𝑢𝑜𝑝𝑡𝑖 solution; 𝑢0 = 𝑢0 ∪𝑅𝑖 i = i + 1

14 end
15 if 𝑢0𝑖𝑠𝑛𝑜𝑡𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 then
16 𝑢0 = ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝐶𝑜𝑛𝑠𝑐𝑟𝑢𝑐𝑡𝑖𝑜𝑛(𝑢0)
17 end
18 return 𝑢0

Algorithm 2: Pseudo-code for heuristics construction algorithm.

It then crosses solutions by the following rule: with the first solution is ran-
domly selected route 𝑅1. Then another solution is selected from a route 𝑅2 that

12

Figure 7. The dependence of the quality of solutions on the size of the tabu list when
using 𝑇 𝑖𝑚𝑒𝑆𝑝𝑒𝑛𝑡 termination strategy

does not include client requests from the first route etc. If the client requests were
not included in the solution 𝑢0, then these requests are added by the construction
heuristics algorithm (for example, Solomon algorithm).

Now we describe the primary function 𝑆𝑜𝑙𝑣𝑒𝐶𝐷𝑃 () of the modified algorithm
presented in pseudocode form in Scheme 3. In this function using a loop is a sequen-
tial formation of an array of the best solutions 𝑈𝑜𝑝𝑡 by means TabuSearch algorithm.

Based on the results of the experiments described in the preceding section,
we decided to set the parameters of the algorithm are not fixed values, but as a
random variable of predetermined period. For example, the size of the tabu list ℎ is
defined as the interval [10, 35](see pict. 6 and pict. 7) and the neighbordhood size
𝑙 = 𝑁𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑑ℎ𝑜𝑜𝑑 is defined as the interval [6 ·𝑛, 8.5 ·𝑛], where 𝑛 – problem size (see
pict. 8).

Let 𝜓𝑖 = (𝜓1
𝑖 , 𝜓

2
𝑖 , 𝜓

3
𝑖) = (𝑙𝑖, 𝑝𝑖, ℎ̃𝑖) – a set of values of the TabuSearch configu-

ration parameters which was using for solving the problem in the step 𝑖.
Let [𝜓𝑗𝑏𝑒𝑔𝑖𝑛, 𝜓

𝑗
𝑒𝑛𝑑] – an optimal interval of the TabuSearch 𝑗 -parameter. For

example: if 𝑗 = 3, then: [𝜓3
𝑏𝑒𝑔𝑖𝑛, 𝜓

3
𝑒𝑛𝑑] = [ℎ𝑏𝑒𝑔𝑖𝑛, ℎ𝑒𝑛𝑑] = [10, 40]. These intervals are

initial data and they are set in the initialization block.
The configuration parameters 𝜓𝑗𝑖 are randomly selected from the interval

[𝜓𝑗𝑏𝑒𝑔𝑖𝑛, 𝜓
𝑗
𝑒𝑛𝑑] according to a distribution law. We proposed to build the distribu-

tion density 𝑓𝑗(𝜓
𝑗
𝑖) of the random variable 𝜓𝑗𝑖 as follows. At first, we define anchor

points:

𝜌𝑗𝑖 =
𝐹 (𝑢𝑜𝑝𝑡1)

𝑎𝑣𝑔[𝐹 (𝑢𝑜𝑝𝑡𝑘)]
,∀𝑘 : 𝜓𝑗𝑘 = 𝜓𝑗𝑖 (25)

The number of anchor points 𝑛𝜌 is smaller than the set of optimal solutions, because
a set of anchor points are removed the same points (𝑛𝜌 ≤ 𝑛𝑢).

13

Figure 8. The dependence of the quality of solutions on the neighborhood size when using
𝑇 𝑖𝑚𝑒𝑆𝑝𝑒𝑛𝑡 termination strategy

The main idea is that the distribution density should be larger at those points
(parameters 𝜓𝑗𝑖) in which high quality solutions than the points at which the low
quality of solutions. Therefore, we presented the distribution function 𝑓𝑗(𝑧) as a
sum of kernel functions:

𝑓𝑗(𝑧) = 𝛼𝑗 *
𝑛𝜌∑︁
𝑖=1

𝜌𝑗𝑖 *𝐾(𝑧 − 𝜓𝑗𝑖) (26)

where: 𝐾(𝑥) – kernel function, 𝛼 – a normalizing parameter

We have chosen as the kernel the function of parabolic type(known as an
Epanechnikov function), because during the experiments the best results were ob-
tained using this function:

𝐾(𝑧) = 3/4 · (1 − 𝑧2) (27)

14

1 function SolveCDP(𝑛𝑚𝑖𝑛𝑠)
2 // Initialize variables:
3 𝜓 = ∅, 𝑝𝑢 = ∅, 𝑈𝑜𝑝𝑡 = ∅, 𝑖 = 0
4 while the breakpoint is not triggered do
5 // set TabuSearch parameters
6 for 𝑗 = 1 . . . 3 do
7 // 𝑓𝑗 – the density distribution of the random
8 // variable 𝜓𝑗 (TabuSearch parameter 𝑙, 𝑝 or ℎ)

9 𝜓𝑗𝑖 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝜓𝑗𝑏𝑒𝑔𝑖𝑛, 𝜓
𝑗
𝑒𝑛𝑑, 𝑓𝑗)

10 end
11 // Make solution using heuristics construction algorithms
12 𝑢0 = 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑈𝑜𝑝𝑡, 𝑛𝑚𝑖𝑛𝑠)
13 // Improve solution 𝑢0 using TabuSearch algorithm

𝑢𝑜𝑝𝑡𝑖 = 𝑇𝑎𝑏𝑢𝑆𝑒𝑎𝑟𝑐ℎ(𝑢0, 𝜓𝑖)
14 𝑈𝑜𝑝𝑡 = 𝑈𝑜𝑝𝑡 ∪ {𝑢𝑜𝑝𝑡𝑖 }
15 // Sort ascending optimums 𝑈 of the objective function
16 𝑈𝑜𝑝𝑡 = 𝑠𝑜𝑟𝑡(𝑈𝑜𝑝𝑡)
17 𝑝𝑖+1

𝑢 = 𝑢𝑝𝑑𝑎𝑡𝑒(𝑝𝑖𝑢)
18 i = i + 1

19 end

20 return 𝑢𝑜𝑝𝑡1

Algorithm 3: Pseudo-code for modified tabu-search algorithm.

The parameter 𝛼𝑗 was introduced in the density function to perform the nor-
malization condition:

𝜓𝑗
𝑒𝑛𝑑∫︁

𝜓𝑗
𝑏𝑒𝑔𝑖𝑛

𝑓𝑗(𝑧)𝑑𝑧 = 1 => (𝛼𝑗)
−1 =

𝑛𝜌∑︁
𝑖=1

𝜌𝑗𝑖 ·

𝜓𝑗
𝑒𝑛𝑑∫︁

𝜓𝑗
𝑏𝑒𝑔𝑖𝑛

𝐾(𝑧 − 𝜓𝑗𝑖)𝑑𝑧 (28)

The parameter 𝛼𝑗 can be written in explicit form:

(𝛼𝑗)
−1 =

3

4
·
𝑛𝜌∑︁
𝑖=1

𝜌𝑗𝑖 · [(1 − (𝜓𝑗𝑖)
2) · (𝜓𝑗𝑒𝑛𝑑 − 𝜓𝑗𝑏𝑒𝑔𝑖𝑛)+

+ 𝜓𝑗𝑖 · ((𝜓𝑗𝑒𝑛𝑑)
2 − (𝜓𝑗𝑏𝑒𝑔𝑖𝑛)2) − 1/3 · (𝜓𝑗𝑒𝑛𝑑)

3 − (𝜓𝑗𝑏𝑒𝑔𝑖𝑛)3)]

(29)

In figure 9 the results of an experiment in which were presented a dependence
of the quality of the solutions obtained by the classical and modified algorithms and
the breaking point time. As seen from the graph, with an increase in operating time
of the computational scheme, the quality of solutions obtained using the modified
algorithm is growing faster than using classical Tabu Search algorithm.

15

Figure 9. The dependence of the quality of solutions and the breaking point time by clas-
sic algorithm(’×’ mark) with random selection tuning parameters and modified(’o’ mark)
algorithms using 𝑇 𝑖𝑚𝑒𝑆𝑝𝑒𝑛𝑡 termination strategy.

Conclusion

During the research has been investigated and implemented Tabu Search al-
gorithm to solve the Routing Courier Delivery problem with time windows. Also a
modified algorithm was developed based on the Tabu Search Algorithm to improve
the quality of solutions. Modified algorithm was given the best solutions in terms
of the balance between the number of vehicles and the cost traveled. In practice
this algorithm can be used in intelligent systems for decision support, improving the
quality of customer service and reducing waiting time, this will reduce fuel costs and
depreciation of transport. The analysis of the parameters of implemented algorithms
allowed us to determine their optimal values for this class of routing problems. With
the modified algorithm was found solutions of model problems, which in most cases
have an acceptable deviation from the global optimum.

References

[1] F. Ordonez, Chen Wang, A New Approach for Routing Courier Delivery Ser-
vices //METRANS Transportation Center:University of Southern California
Los Angeles, 2012, 81–115.

[2] R. Masson, F. Lehued, O. Peton,The dial-a-ride problem with transfers. //
Computers and Operations Research, Vol. 41, 2014, p. 12–23.

16

[3] T. Babb, Pickup and Delivery Problem with Time Windows // Coordinated
Transportation Systems: The State of the Art. Department of Computer Sci-
ence University of Central Florida Orlando, Florida, 2005, 38 p.

[4] R. Shafeyev ,L. Lyubchik, A some realization of Tabu Search algorithm for
Solving the Transportation Problem with Time Constraints // Vestnik NTU
”KhPI”. – Kharkov: NTU ”KhPI”, 2013. – No3 (977). – p. 35–39.

[5] R. Shafeyev. Java-based optimixation framework for solving routing problems.
url: http://jlogistics.net, 2015.

[6] W Barnes, Solving the pickup and delivery problem with time windows using
reactive tabu search // Transportation Research Part B: Methodological, Vol.
34 Issue 2, 2000, p. 107–121.

[7] B. Coltin, M. Veloso, Scheduling for Transfers in Pickup and Delivery Problems
with Very Large Neighborhood Search // The Twenty-Eighth Conference on
Artificial Intelligence, Quebec City, Canada, 2014, 7 p.

[8] E. Goncharov, Y Kochetov, Probabilistic search with exclusions for dis-
crete unconstrained optimization //Discrete Analysis and Operations Research,
Moscow, Serial 2. Vol. 9, 2002, p. 13-30.

[9] Y Kochetov, Probabilistic methods of local search for discrete optimization
problems //Discrete Mathematics and Its Applications: Proceedings of youth
lectures and scientific schools in discrete mathematics and its applications, Pub-
lishing House of the Center for Applied Research at the Mechanics and Math-
ematics. Faculty of Moscow State University, 2001, p. 84-117.

[10] O. Braysy, M. Gendreau, Vehicle Routing Problem with Time Windows, Part
I: Route Constuction and local algorithms // Transportation science Vol.39 No.
1, 2005, p. 104-118.

[11] V. Goldberg, R. Kennedy, An Efficient cost scaling algotirhm for the assignment
problem, Math. Program., 1995, p. 153–177.

[12] N. Christofides, S. Eilon, An algorithm for the vehicle dispatching problem
//Operational Research Quarterly, 20, 1969, p. 309–318.

[13] B. Golden, E. Wasil, J. Kelly, I-M. Chao. The impact of metaheuristics on
solving the vehicle routing problem: Algorithms, problem sets, and computa-
tional results. In T. Crainic and G. Laporte, editors // Fleet Management and
Logistics, Kluwer, Boston, 1998 p. 33–56.

[14] E. Taillard. VRP benchmarks.
url: http://mistic.heig-vd.ch/taillard/problemes.dir/vrp.dir/vrp.html, 1993.

[15] A. Attanasio, J. Bregman,G. Ghiani, E. Manni. Real-time fleet management
at Ecourier Ltd. Dynamic Fleet Management, volume 38 of Operations Re-
search/Computer Science Interfaces, chapter 10, p.219–238, 2007.

[16] A. Beaudry, G. Laporte, T. Melo, Nickel. Dynamic transportation of patients
in hospitals. Berichte des Fraunhofer ITWM, Nr. 104 :p.1–34, 2010.

[17] M.Romero, L.Sheremetov and A.Soriano. A genetic algorithm for the pickup
and delivery problem: An application to the helicopter offshore transportation.
In Theoretical Advances and Applications of Fuzzy Logic and Soft Computing,
volume 42 of Advances in Soft Computing, 2007, p. 35–44.

17

[18] M.Romero, L.Sheremetov and A.Soriano. Yannick Kergosien, Christophe Lent,
D. Piton, Jean-Charles Billaut. A tabu search heuristic for a dynamic trans-
portation problem of patients between care units. 29 pages. 2010.

[19] H. Sarak, A. Satman. The degree-day method to estimate the residential heating
natural gas consumption in Turkey: a case study. Pergamon, Energy 28 (2003)
929–939.

18

